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ABSTRACT

Previous work has shown that for contagion processes on ex-
tended star networks (trees with exactly one node of degree
> 2), there is a simple, closed-form expression for a highly
accurate approximation to the maximum likelihood infection
source. Here, we generalize that result to a class of hyper-
trees which, although somewhat structurally analogous, pro-
vides a much richer representation space. In particular, this
approach can be used to estimate patient zero sources, even
when the infection has been propagated via large group gath-
erings rather than person-to-person spread, and when it is
spreading through interrelated social bubbles with varying de-
grees of overlap. In contact tracing contexts, this estimator
may be used to identify the source of a local outbreak, which
can then be used for forward tracing or for further backward
tracing (by similar or other means) to an upstream source.

Index Terms— Infection source identification, SI model,
hypergraph, maximum likelihood, contagion, superspreader

1. INTRODUCTION

Localizing sources of spreading processes in networks has be-
come a well-studied inference problem in information theory
and signal processing [1–3]. As part of COVID-19 pandemic
response, there has been a strong focus on (forward) con-
tact tracing to determine who might have been exposed to the
pathogen. Due to the clustered nature of this disease spread,
however, there has been recent interest in backward contact
tracing to determine the source of a pathogen to then facilitate
forward tracing [4–6]. This is especially effective since it is
estimated that 80 percent of infections arise from only about
10 percent of cases [7, 8]—so-called superspreading events.

Distinct from the clustered nature of disease spread, there
is greater clustering in social networks themselves as peo-
ple form social bubbles due to contact adaptation via social
distancing [9]. Such bubbles may include families living to-
gether, co-workers in close quarters, friends in social gath-
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erings, or children in daycare. Transmission within such set-
tings may well occur far more easily and quickly than through
less direct, sustained interactions. In practice, people are in-
teracting in partially overlapping bubbles, e.g. daycare stu-
dents are also in family groups. As such, spreading models
that capture group-based transmission may be more insight-
ful than ones based on person-to-person transmission, so as to
localize COVID-19 superspreading events.

To model pathogen spread via groups, one may use bi-
partite graphs [10] where people are one kind of node and
associations another. As an alternative, we consider spread
over hypergraphs that correspond to such bipartite graphs,
where nodes are people and hyperedges are associations. As
summarized in a very recent review paper [11, Sec. 7.1.2],
there is some study of spreading process dynamics in hyper-
graphs [12–15], but no study on source localization.

Since infection source localization in general networks is
mathematically difficult, one must make some simplifying as-
sumptions to define a more tractable problem. In our case, we
extend the model of susceptible-infected (SI) spreading over
extended star networks [16] to an analogous class of extended
star hypertrees. For the situations described by our model, we
define a computationally-efficient approximation to the maxi-
mum likelihood estimate (MLE) of the hyperedge containing
the source of the infection relative to the particular infected
set in an observed snapshot of data. We then prove the ap-
proximation is close to MLE (in the sense of [16]), and also
give simulations demonstrating efficacy of the estimator.

Beyond COVID-19 and similar pandemics, our approach
also captures broadcasting information in a one-to-many
manner, rather than person-to-person communication as mod-
eled in traditional rumor spreading [1].

2. SOURCE LOCALIZATION FOR GRAPHS

Let us review the standard SI compartment model of infection
spreading on graphs, with edge-based propagation in contin-
uous time. That is, at any particular point in time, nodes
are either susceptible or they are infected and capable of in-
fecting susceptible individuals. All nodes begin as suscep-
tible, except for one (the source), which becomes infected
through some outside action. Subsequently, if a susceptible



node shares an edge with an infected neighbor, the infection
will traverse that edge and infect the susceptible node with
a waiting time that is exponentially distributed with mean T .
Once infected, a node remains that way indefinitely. Due to
the memorylessness property of the system, at any given time
the next infection is equally likely to occur along any outgo-
ing edge from the current infected set.

Assume there is a single source. Source localization in a
graph is then, given an observed infection pattern (the sub-
graph of nodes infected at some point in time), finding the
MLE of the source node giving rise to that infection pattern.

Let an extended star network be a tree with exactly one
node of degree > 2: this center node is denoted O. The m
neighbors of this node give rise tom arms—chains of succes-
sive nodes of degree 2. The nodes of each arm are numbered
starting with 1 (for the node adjacent to O) and increasing
from there.

If the contagion were confined to a single arm, source lo-
calization reduces to a problem on a line graph, and the MLE
is well-known to be the midpoint of the infection (in fact, for
a uniform prior, the likelihood function follows a binomial
distribution [1,17]). Therefore, we assume that any nontrivial
infection pattern will comprise O, along with the closest ki
nodes along each arm i. For an extended star network, there
is a simple, closed-form expression for a highly accurate ap-
proximation to the MLE [16]. It is, along the longest arm:

` =
k1 −

∑m
i=2 ki

m−1

2
. (1)

Further analysis in [18] tightened the approximation bound
for this estimator. Note that estimator (1) is scale-invariant—
all arm lengths ki can be scaled by a constant, and the result-
ing value of ` will be scaled by the same constant.

3. SPREADING PROCESS ON HYPERGRAPHS

Having an understanding of spreading and source localization
on graphs, now we turn to hypergraphs.

A hypergraph is a generalization of a graph, consisting of
a set of nodes and hyperedges. Unlike in a graph, where an
edge can only connect two nodes, a hyperedge can connect
two or more nodes. For present purposes, we further define a
hypertree (cf. junction trees in statistical inference [19]) as a
hypergraph that inherits the conventional properties of trees—
that is, it is connected, undirected, and acyclic.

For source localization, our hypertree consists of a set of
nodes representing all individuals under study, and a set of
hyperedges representing the various non-distanced groupings
in which these nodes exist. We denote these hyperedges as

{E0, E1,1, . . . , E1,k1
, E2,1, . . . , E2,k2

, . . . , Em,1, . . . , Em,km
}

such that for all i,E0∩Ei,1 6= ∅; for all i, j,Ei,j∩Ei,j+1 6= ∅;
and all other intersections are empty.

Intuitively, E0 represents a superspreading event, with its
members being individuals in attendance. The remaining hy-
peredges are arranged in m arms of lengths {k1, . . . , km}.
The first hyperedge of each arm has an overlap with E0, as do
successive neighboring hyperedges within each arm.

To develop a hypergraph SI model, we consider each hy-
peredge to be in either a susceptible or infected state, since
we consider close and continuing contact among members of
a hyperedge. Once infected, a hyperedge remains that way
indefinitely. We recognize this means a node can be a mem-
ber of both a susceptible hyperedge and an infected hyper-
edge at the same time, but such an ambiguity is at worst only
temporary. If necessary, ambiguities may be resolved as de-
sired (presumably in accordance with an appropriate physical
model), as long as it is done in a consistent manner.

Spreading is still modeled in continuous time. When v
members of a susceptible hyperedge are also members of a
different, infected hyperedge, the entire set of nodes in the
susceptible hyperedge becomes infected with a waiting time
that is exponentially distributed with mean T/v. To see why
this makes sense, suppose we were to consider infections as
taking place over simple edges (hyperedges of size 2), then we
would model waiting time as exponentially distributed with
mean T . Since there are v nodes in the overlap, we stipulate
that transmission over any one of them is sufficient to convey
infected status from one hyperedge to the other (since nodes
within a single hyperedge are assumed to have close, contin-
uing contact). Accordingly, the appropriate transmission time
is distributed as the lesser of the two node-based transmis-
sion times, which provides the desired result (exponentially
distributed with mean T/v).

4. SOURCE LOCALIZATION FOR HYPERGRAPHS

How does the source localization result for extended star
graphs from Sec. 2 extend to our hypergraph setting in Sec. 3?
If we consider our hyperedges to be nodes in a graph, then we
also have an infection spreading over an extended star net-
work. However, the difference is that the propagation times
are now no longer uniformly exponentially distributed with
mean T , but instead vary with each hop.

We must determine the effect of shorter, variable trans-
mission times on the growth of the infected set. Consider a
case where two arms are growing simultaneously. The first
arm consists of edges with waiting time T . The second arm
consists of edges with waiting time T/v. Intuitively, it is clear
that, over time, the second arm will grow at v times the rate
of the first arm. Alternatively, if we were to look at a snap-
shot of the second arm and find it to have length k, the maxi-
mum likelihood estimate for the length of the first arm would
be k/v. Accordingly, we conclude that we should apply a
weight corresponding to this rate to each hyperedge transmis-
sion in our model, so that the weighted length of an arm of
hyperedges represents, in a typical sense, the equivalent un-



weighted length of an equivalent set of simple edges. Thus,
since a simple edge hop is considered to have length 1, we
will denote a hyperedge hop with v overlapping nodes to have
equivalent length 1/v. We now show this more formally.

Claim 1. Under the spreading dynamics described above,
over an equivalent period of time, the probability of observ-
ing vx hops on an arm of hyperedges with successive overlap
v is equal to the probability of observing x hops on a singly-
connected arm.

Proof. Consider two related structures. Let the first be an ex-
tended star network with v+ 1 arms of singly-connected sim-
ple edges. Let the second be a hypertree with an origin node,
one arm of singly-connected simple edges, and one arm of
hyperedges with successive overlap v. In each case, there are
always v + 1 possibilities for the next step in the propaga-
tion of the infection. Since the waiting times for each step
are exponentially distributed, each of those distributions are
memoryless, and thus each of the choices for the potential
next steps are equiprobable. Let us label a step along the sim-
ple edge arm as choice 1, and the remaining possible steps,
all along the hyperedge arm, as choices 2, . . . , v + 1. Now,
suppose we haveK total steps taken. Then the probability for
a given breakdown {k1, k2, . . . , kv+1} of each of the choices
can be written as

P (k1, k2, . . . , kv+1) =
K!

k1!k2! . . . kv+1!(v + 1)K
(2)

From this expression, it is clear that the maximum likelihood
is attained when all of the ki values are equal (let us call this
value an unsubscripted k). To see that this is the case, con-
sider what happens if we replace one of the k values with
k + 1, and another with k − 1. Then the numerator of the
probability remains unchanged, but the denominator loses a
factor of k while gaining a factor of k + 1. This net increase
in the denominator implies a decrease in the overall proba-
bility. Since any perturbation from equal k values can be de-
composed as a sequence of similar steps (removing smaller
factors from the denominator and replacing them with larger
factors), the resulting probability would be strictly less. Now,
since each of the choices {2, . . . , v + 1} imply a step along
the hyperedge arm, we conclude that in a maximum likeli-
hood growth pattern, this arm would grow at v times the rate
of a simply-connected arm.

Claim 2. If a simple edge hop is considered to have length 1,
a hyperedge hop with v overlapping nodes can be considered
to have equivalent length 1/v.

Proof. Denote the correct equivalent length of the hyperedge
hop by z. Now, if we scale up the problem by a factor of v,
then we have v single hops and v2 hops along the hyperedge.
By the assumption, the total length of the v single hops is
v, and since they are equivalent, the v2 hyperedge hops must
total to the same. Therefore, each hyperedge hop can be con-
sidered to have equivalent length 1/v.

Therefore, let vi,1 = |Ei,j ∩ Ei,j−1| and vi,j = |Ei,j ∩
Ei,j−1| for j > 1. Then let wi =

∑ki

j=1 1/vi,j . Now, by
weighting each transmission and arm length accordingly, and
applying the formula from the edge-based model, we can state
our resulting maximum likelihood hyperedges are given by
the following. That is to say, this is the proposed estimator.

Claim 3. Under the spreading dynamics given above, the
maximum likelihood source for the contagion process is well-
approximated (in the same sense as in [16]) by

E1,l :

l∑
j=1

1

v1,j
=
w1 −

∑m
i=2 wi

m−1

2
. (3)

Proof. Substitute the weighted edge lengths into the maxi-
mum likelihood expression from [16].

5. SENSITIVITY TO NOISY DATA

In most real-world settings, data is subject to errors. We con-
sider a few classes of errors, and evaluate their impact on the
source estimate. Since results will depend on the weights of
the links between successive nodes in the vicinity of the opti-
mal ML estimate, they are given as order results. We assume
the overlaps wi are distributed such that E[(1/wi)] is finite.
Missing Arm (Non-longest) If we miss an entire arm by not
observing one of the outgrowths of the superspreader event
(e.g. at a protest, without attendance information), the impact
is likely to be small, as long as the equivalent length of that
arm is typical of the other non-longest arms. Specifically, in
the summation in the numerator of (3), we will lose one of
the wi values in the calculation of the average length of the
non-longest arms. This error would be zero mean, standard
deviation Θ(σ/(m− 1)), where σ represents the standard de-
viation of the weighted lengths of the non-longest arms.
Missing Step (Non-longest Arm) If a single step is lost from
a non-longest arm, the corresponding wi will be reduced by
the weighted length of that hop, which will then reduce the
computed average weighted length of the non-longest arms.
This will have an Θ(1/m) impact in an outward direction
along the longest arm.
Missing Arm (Longest) This error is the most serious. Since
we do no have the arm on which the MLE lies, the ML source
node will definitely be lost entirely, and a source on the next
longest arm (or at the center node O) will be chosen instead.
Missing Step (Longest Arm) This error is more significant
than if it were on a different arm. Since the reduction is now
in w1, it is no longer divided by m − 1, and due to the sign
change, it would have an impact of Θ(1) in an inward direc-
tion along the longest arm, rather than Θ(1/m) outward. This
also assumes that this missing step does not change which arm
appears to be the longest. If it did, the source estimate would
now be on a different arm entirely, a nonlinear estimation-
theoretic threshold phenomenon [20].



6. NUMERICAL EXPERIMENTS

We examine increasingly more realistic but less general ran-
dom infection patterns, and compare results from our estima-
tor against those from a detailed time-domain simulation. All
random choices are uniform. The random patterns chosen in-
clude:

1. Unconstrained: There are a random number of 2–6
arms, each of random length between 1–50, and each
hyperedge overlap size is random between 1–6.

2. Constrained: The number of arms is random (2–6) as
before, but now all arms but one have random length
(11–30), while a randomly chosen arm has random
length (31–50). The overlap sizes are randomly se-
lected (1–6). There is a distinct longest arm, but since
we are interested in the weighted length rather than the
number of overlaps per se, this may not carry over.

3. Typical: This setting reflects spread patterns that are
typical in the information-theoretic sense. The struc-
ture begins similarly to the constrained case: 2–6 arms,
one of length 31–50, the rest of length 21–30, overlap
size 1–6. Now, we compute the weighted lengths of
each arm. Arms with the smallest and largest weighted
lengths remain unchanged. For each remaining arm, we
begin at the center and work our way outwards, com-
puting a running total of the weighted length as we go.
Once we surpass the smallest weighted length, the re-
maining part of the arm is truncated. This process en-
sures the non-longest arms all have similar weighted
lengths, as expected for a typical growth pattern.

We also consider all three models, but with unit overlap
(called single rather than multiple). This mimics simple
graphs to an extent. The difference is that in simple graphs,
the infection originates at a single node and spreads in all
directions from there. In our hypertree model, the infection
begins within a hyperedge, and the initial spread is through
overlaps with adjacent hyperedges. This means the effective
length of the longest arm is arguably one hop longer than in
the simple graph case. We examine the effect of adding a
small offset to the w1 term in (3) to counter this difference.

In each case, we run 1000 trials using the chosen pa-
rameters and model, and compute when our estimator selects
a different arm than the time-domain simulation (including
when one or the other choose the central hub, called “Arm
0”), as well as when the two methods give different node re-
sults (given that arm selections match). In addition to these
two error rates, we measure the average hops of node errors,
and the positivity rate for the errors (how often the index of
the estimated node is larger than the index from the simula-
tion) to identify systematic bias. Results without offsets are
in Table 1, whereas those with small offsets are in Tables 2–5.

In some cases, the listed “errors” are not truly errors—
merely ties broken differently—but we report them anyway.

arm error node error error size positivity

unconstr. (sing.) 0.60% 9.40% 1.00 88.20%
unconstr. (mult.) 2.10% 33.20% 1.22 12.60%
constr. (sing.) 0.00% 4.80% 1.00 97.90%
constr. (mult.) 0.80% 20.70% 1.01 85.90%
typical (sing.) 0.00% 0.40% 1.00 0.00%
typical (mult.) 0.00% 25.90% 1.00 97.70%

Table 1. Estimator Performance (no offset)

arm error node error error size positivity

unconstr. (sing.) 0.10% 10.00% 1.00 82.00%
unconstr. (mult.) 2.80% 37.60% 1.24 4.70%
constr. (sing.) 0.30% 5.40% 1.00 96.30%
constr. (mult.) 0.90% 17.30% 1.01 42.10%
typical (sing.) 0.00% 0.10% 1.00 0.00%
typical (mult.) 0.00% 11.40% 1.00 70.20%

Table 2. Estimator Performance (0.125 offset)

arm error node error error size positivity

unconstr. (sing.) 0.30% 9.30% 1.00 82.80%
unconstr. (mult.) 2.70% 42.90% 1.29 4.60%
constr. (sing.) 0.00% 5.70% 1.00 93.00%
constr. (mult.) 0.80% 18.30% 1.00 31.50%
typical (sing.) 0.00% 0.60% 1.00 0.00%
typical (mult.) 0.00% 12.50% 1.00 55.20%

Table 3. Estimator Performance (0.16 offset)

arm error node error error size positivity

unconstr. (sing.) 0.40% 5.20% 1.00 59.60%
unconstr. (mult.) 4.00% 47.00% 1.28 0.70%
constr. (sing.) 0.00% 2.60% 1.00 69.20%
constr. (mult.) 1.10% 22.50% 1.02 10.40%
typical (sing.) 0.00% 0.40% 1.00 0.00%
typical (mult.) 0.00% 13.30% 1.00 15.80%

Table 4. Estimator Performance (0.25 offset)

arm error node error error size positivity

unconstr. (sing.) 0.50% 11.10% 1.00 3.60%
unconstr. (mult.) 2.70% 67.50% 1.32 0.20%
constr. (sing.) 0.30% 11.70% 1.00 0.00%
constr. (mult.) 0.90% 44.60% 1.05 0.20%
typical (sing.) 0.00% 0.10% 1.00 0.00%
typical (mult.) 0.00% 38.20% 1.03 0.00%

Table 5. Estimator Performance (0.5 offset)



For the constrained and unconstrained single cases, all ob-
served arm errors are either (a) when there are two arms of
length n and n+1 respectively, so the source is equally likely
be the central hub or one spot out on the longer arm, or (b)
when two arms are tied for longest. In the typical single case,
all observed node errors occur are when there are two arms,
and the total number of overlaps is odd, so it is equally likely
for the source to have been on either side of the center overlap.
Similar non-errors may arise in other cases, but they are not
the only (or even dominant) contributors to those error rates.

For multiple overlaps, arm errors tend to occur when the
two largest weighted lengths are very close in value, and due
to granularity the observed maximum on the shorter arm is
actually higher than on the longer arm. The frequency of such
errors is relatively independent of the offset value. Further,
arm length constraints reduce the incidence of such cases (as
it becomes less likely the top two weighted arm lengths are
close together), and they disappear entirely under typicality.

Node errors are more frequent than in the single case,
as larger overlaps correspond to smaller increments in the
weighed length. Errors are most common when there is a
wide discrepancy in the weighted lengths of the non-longest
arms—a circumstance less likely under constraints, and even
less so under typicality. Unsurprisingly, lower error rates are
observed when using offsets that yield positivity rates close to
50%, i.e., biased outcomes tend to be less accurate. Among
the offsets examined, 0.25 provides the best performance for
single overlap settings, whereas 0.125 seems to work best
overall for multiple overlap settings. This makes sense, since
we are essentially trying to account for a difference of a sin-
gle hop, and multiple overlaps correspond to shorter weighted
lengths per hop on average than single hops.

7. CONCLUSION

By generalizing the extended star network to hypertrees, we
leverage a known result for maximum likelihood source esti-
mation to a much wider set of cases. In particular, we now
consider superspreading events, as well as nontrivial inter-
actions between overlapping social bubbles. Both of these
social/epidemiological model enhancements are significant in
understanding the propagation of contagion processes such as
COVID-19. We have shown our approach is a solid method to
address such challenges, preserves the optimality of the tree-
based method, and has some desirable robustness properties
as well. As extensions, we aim to study settings with multiple
sources [21] and with general hypergraphs [22].
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